
Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

1

Dan Rosenberg

Owned Over
Amateur Radio

Remote Kernel
Exploitation in 2011

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

2

Who am I?

▪ Security consultant and vulnerability researcher at
Virtual Security Research in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Focus on Linux kernel
▫ Research on kernel exploitation and mitigation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

3

Agenda

▪ Motivation

▪ Challenges of remote exploitation

▪ Prior work

▪ Case study: ROSE remote stack overflow
▫ Exploitation
▫ Backdoor

▪ Future work

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

4

Why am I giving this talk?

Motivation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

5

Why Remote Kernel Exploits?

▪ Instant root
▫ No need to escalate privileges

▪ Remote userland exploitation is hard!
▫ Full ASLR + NX/DEP
▫ Sandboxing
▫ Reduced privileges

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

6

Goals of This Talk

▪ Sorry, not actually an amateur radio talk

▪ Exploit development methodology

▪ Individual bugs vs. exploit techniques

▪ Discuss next steps for kernel hardening

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

7

Wait, so you mean this is kind of hard?

Challenges of
Remote Kernel

Exploitation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

8

Warning: Fragile

▪ Consequence of failed remote userland exploit:
▫ Crash application/service, wait until restarted
▫ Crash child process, try again immediately

▪ Consequence of failed remote kernel exploit:
▫ Kernel panic, game over

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

9

Lack of Environment Control

▪ Typical local kernel exploit:
▫ Can trigger allocation of heap structures
▫ Can trigger calling of function pointers
▫ High amount of information leakage available to local

users

▪ Remote kernel exploit:
▫ ?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

10

Escape From Interrupt Context

▪ Many remote kernel issues occur in interrupt context
▫ Asynchronous networking events

▪ End goal: userland code execution (remote shell)
▫ How do we get there?
▫ No process backing execution

▪ Need to transition
▫ Interrupt context to process context to userland

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

11

Prior Work

What's been done before?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

12

A Few Statistics

▪ 18 known exploits for 16 vulnerabilities
▫ 19 authors
▫ 9 with full public source code
▫ 3 with partial or PoC source

▪ Wide range of platforms
▫ Solaris and OS X still need some remote love

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

13

By Operating System

8

2

3

3

Windows
Linux
*BSD
NetWare

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

14

By Vulnerability Class

12

3

1

Stack Overflow
Heap Overflow
Array Indexing

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

15

By Year

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

1

2

3

4

5

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

16

Highlights

▪ Barnaby Jack: Step into the Ring 0 (August 2005)
▫ First publication on remote kernel exploitation
▫ Transition to userland and kernel backdoor

▪ Sinan Eren: GREENAPPLE (May 2006)
▫ First remote kernel exploit in Immunity CANVAS

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

17

Highlights (cont.)

▪ hdm, skape, Johnny Cache (November 2006)
▫ Broadcom, Dlink, and Netgear wifi drivers
▫ First remote kernel exploits in Metasploit

▪ Alfredo Ortega, Gerardo Richarte: OpenBSD IPv6 mbuf
overflow (April 2007)
▫ First public remote kernel heap overflow
▫ Bypasses userland NX

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

18

Highlights (cont.)

▪ Kostya Kortchinsky: MS08-001 (January 2008)
▫ Immunity CANVAS
▫ First publicized remote Windows kernel pool overflow

▪ sgrakkyu: sctp-houdini (April 2009)
▫ First remote Linux sl*b overflow
▫ Introduced vsyscall trick to transition from interrupt

context to userland

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

19

Observations

▪ Majority stack overflows, but none dealt with NX kernel
stack
▫ Let's fix that

▪ No Linux interrupt context stack overflows
▫ sgrakkyu and twiz showed us how in Phrack 64, let's

do it in real life

▪ Wireless drivers suck
▫ Six 802.11 remote kernel exploits

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

20

Building the
Exploit

Or: How I Learned to Stop Worrying and
Love the Ham

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

21

Target: 32-bit x86 PAE Kernel

▪ Kernel has NX support (CONFIG_DEBUG_RODATA)
▫ Only enforced on PAE (32-bit) or 64-bit kernels

▪ Can't execute first-stage shellcode on kernel stack

▪ Can't introduce code into userspace without proper
page permissions

▪ No vsyscall trick for easy transitions

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

22

Test Setup

▪ Attacker and victim VMs (Ubuntu 10.04)

▪ Debugging using KGDB over virtual serial port (host
pipe)

▪ BPQ (AX.25 over Ethernet)

▪ Except for glue code, exploit written entirely in x86
assembly

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

23

Famous Last Words

Debian Security Advisory DSA-2240-1:

Dan Rosenburg reported two issues in
the Linux implementation of the
Amateur Radio X.25 PLP (Rose)
protocol. A remote user can cause a
denial of servicedenial of service by providing
specially crafted facilities fields.

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

24

Intro to ROSE

▪ Rarely used amateur radio protocol

▪ Provides network layer on top of AX.25's link layer

▪ Uses 10-digit addresses and AX.25 callsigns

▪ Static routing only

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

25

CVE-2011-1493

▪ On initiating a ROSE connection, parties exchange
facilities (supported features)

▪ FAC_NATIONAL_DIGIS allows host to provide list of
digipeaters

▪ Parsing for this field reads length value from frame and
copies digipeater addresses without bounds checking,
causing a stack overflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

26

Sad Code :-(
...

l = p[1];l = p[1];

...

else if (*p == FAC_NATIONAL_DIGIS) {

 fac_national_digis_received = 1;

 facilities->source_ndigis = 0;

 facilities->dest_ndigis = 0;

 for (pt = p + 2, lg = 0 ; lg < llg < l ; pt += AX25_ADDR_LEN, lg += AX25_ADDR_LEN) {

 if (pt[6] & AX25_HBIT)

 memcpymemcpy(&facilities->dest_digis[facilities->dest_ndigis++], pt, AX25_ADDR_LEN);

 else

 memcpymemcpy(&facilities->source_digis[facilities->source_ndigis++], pt, AX25_ADDR_LEN);

 }

}

...

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

27

Constraint #1

▪ The seventh byte of an AX.25 address is AND'd with
AX25_HBIT (0x80) if it's a destination digipeater
▫ Otherwise, treated as a source digipeater

▪ Every seventh byte of our payload needs to be
consistently greater or less than 0x80, or we'll copy
into the wrong array

▪ Requires manual tweaking

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

28

Plan of Attack

Get EIP

Unrestricted code
execution

Install kernel
backdoor

Restore and
recover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

29

Triggering the Bug

▪ Fairly trivial

▪ Modify ROSE facilities
output functions to craft
frame with overly large
length field for
FAC_NATIONAL_DIGIS,
followed by lots of NOPs
(0x90)

Get EIPGet EIP

Unrestricted code
execution

Install kernel
backdoor

Restore and
recover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

30

Evil ROSE Frame

ROSE
header

Facilities
Total

Length =
XX

0x00 FAC_NATIONAL FAC_NATIONAL_DIGIS
len =
0xff 0x9090...

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

31

Got EIP

▪ Recompile ROSE module,
reload, and use rose_call
to initiate connection to
target

▪ Overflowed softirq stack
(interrupt handler)

Program received signal SIGSEGV,
Segmentation fault.
[Switching to Thread 1456]
0x90909090 in ?? ()
(gdb) i r
eax 0x0 0
ecx 0xde3a5f3c -566599876
edx 0x296 662
ebx 0x90909090 -1869574000
esp 0xd11e199c 0xd11e199c
ebp 0x90909090 0x90909090
esi 0x90909090 -1869574000
edi 0x90909090 -1869574000
eip 0x90909090 0x90909090
eflags 0x10286 [PF SF IF RF]
cs 0x60 96
ss 0x68 104
ds 0x9090007b -1869610885
es 0x9090007b -1869610885
fs 0xffff 65535
gs 0xffff 65535

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

32

How to Execute Code?

▪ Traditionally, return into
shellcode on stack

▪ Problem 1: we don't
know where we are
▫ Trampolines are easy

▪ Problem 2: softirq stack
is non-executable

Get EIP

Unrestricted codeUnrestricted code
executionexecution

Install kernel
backdoor

Restore and
recover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

33

Review: ROP

▪ We control the return address and data at %esp

▪ Each return will direct execution to address at stack
pointer and increment it

▪ Chain together function epilogues (“gadgets”) to
perform arbitrary computation

▪ Relies on homogeneity of distribution (binary) kernels
and lack of randomization
▫ Choose gadgets that are more likely to appear in

constant locations across kernels

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

34

Making our Stack Executable

▪ Kernel has nice function
to do this for us:
▫ set_memory_x()

▪ Calling convention has
arguments in registers

▪ ROP stub steps:
▫ Load (%esp & ~0xfff)

into %eax
▫ Load 4 into %edx
▫ Call set_memory_x()
▫ Jump into stack

static unsigned long rop_stub[] = {
/*1*/ PUSH_ESP_POP_EAX,
/*4*/ 0xffffffff,
 0xffffffff,
/*3*/ 0xffffffff,

 ALIGN_EAX,
/*2*/ 0xffffffff,
 0xffffffff,

/*1*/ RET,

/*4*/ POP_EDX,
 0x00000004,
/*3*/ 0xffffffff,
 0xffffffff,
/*2*/ 0xffffffff,
 0xffffffff,

/*1*/ RET,

/*4*/ SET_MEMORY_X,
 JMP_ESP,
};

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

35

Overcoming Space Constraints

▪ We now have traditional
shellcode executing on
the softirq stack!

▪ Problem: length is
limited to 0xff (255),
minus what we've
already used

▪ Not enough room for a
useful payload

Get EIP

Unrestricted codeUnrestricted code
executionexecution

Install kernel
backdoor

Restore and
recover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

36

Needle in a Haystack

▪ Full ROSE frame is intact somewhere on the kernel
heap

▪ Pointer to a memory region containing our socket data
lives on the stack

▪ Walk up the stack, following kernel heap pointers

▪ Search general area for tag included in ROSE frame

▪ Mark it executable and jump to it

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

37

What Now?

▪ We can execute
arbitrary-length
payloads now!

▪ Goal: install kernel
backdoor in ICMP
handler

Get EIP

Unrestricted code
execution

Install kernelInstall kernel
backdoorbackdoor

Restore and
recover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

38

Protocol Handlers

/* Array of network protocol structure */
const struct net_protocol __rcu
*inet_protos[MAX_INET_PROTOS] __read_mostly;

/* Definition of network protocol structure */
struct net_protocol {
 int (*handler)(struct sk_buff *skb);
 void (*err_handler)(struct sk_buff *skb, u32 info);
 ...
};

/* Standard well-defined IP protocols. */
enum {
 IPPROTO_IP = 0, /* Dummy protocol for TCP */
 IPPROTO_ICMP = 1, /* Internet Control Message Protocol */
 ...
};

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

39

Hooking ICMP

▪ Storage on softirq stack
▫ Already executable, safe, persistent

▪ Copy hook and address of original ICMP handler
▫ We'll need this later

▪ Handler is in read-only memory
▫ Flip write-protect bit in %cr0 register

▪ Write address of our hook into ICMP handler function
pointer

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

40

Hooked In

icmp_rcv:
 <icmp_rcv>: push ebp
 <icmp_rcv+1>: mov ebp,esp
 <icmp_rcv+3>: push edi
 <icmp_rcv+4>: push esi
 ...

hook:
 <hook>: push edi
 <hook+1>: push esi
 <hook+2>: push ebx
 <hook+3>: push eax
 ...

IPPROTO_IP

IPPROTO_ICMP

...

handler

err_handler

...

inet_protos:

net_protocol:

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

41

Time to Rebuild...

▪ We've destroyed large
portions of the softirq
stack

▪ How can we keep the
kernel running?

Get EIP

Unrestricted code
execution

Install kernel
backdoor

Restore andRestore and
recoverrecover

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

42

Cleaning Up the Locks

▪ ROSE protocol is holding
two spinlocks
▫ If we don't release

these, the ROSE stack
will deadlock soon

▪ Problem: ROSE is a
module, we don't know
where the locks live

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

43

Needle in a Haystack, Again

▪ Global modules variable: linked list of loaded kernel
modules

▪ A plan!
▫ Follow linked list until we find ROSE module
▫ Read module structure, find start of .data section
▫ Scan .data section for byte pattern of two

consecutive spinlocks (distinctive signature)
▫ Release them

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

44

Preemption Woes

▪ Preemption count must be consistent with what the
kernel is expecting, or scheduler will...

 ...complain and fix it for you?!

 if (unlikely(prev_count != preempt_count())) {
 printk(KERN_ERR "huh, entered softirq %u %s %p"
 "with preempt_count %08x,"
 " exited with %08x?\n", vec_nr,
 softirq_to_name[vec_nr], h->action,
 prev_count, preempt_count());
 preempt_count() = prev_count;
 }

▪ Let's avoid that warning...

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

45

Has Anybody Seen a Preemption
Count?

▪ Preempt count lives at known location in thread_info
struct, at base of kernel stack:

struct thread_info {
 struct task_struct *task; /* main task structure */
 struct exec_domain *exec_domain; /* execution domain */
 __u32 flags; /* low level flags */
 __u32 status; /* thread synchronous flags */
 __u32 cpu; /* current CPU */
 int preempt_count;int preempt_count; /* 0 => preemptable,
 <0 => BUG */
 ...
};

▪ Decrement it and we're done

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

46

Unwinding the Stack

▪ Stack is partially
corrupted from overflow

▪ Need to restore it to
recoverable state

▪ Walk up stack from
current location until we
match a signature of a
known good state

▪ Adjust ESP to good state,
and return

Overflow

Unwind to
frame

boundary

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

47

Refresher: What Have We Achieved?

▪ Trigger the overflow, gain control of EIP

▪ Leverage ROP to mark softirq stack executable, jump
into shellcode

▪ Search for intact ROSE frame on kernel heap, mark
executable, jump into it

▪ Install kernel backdoor by hooking ICMP handler

▪ Do some necessary cleanup and unwind stack for safe
return from softirq

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

48

Kernel
Backdoors for
Fun and Profit

(Insert “backdoor” joke)

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

49

What About That Backdoor Part?

▪ Whenever an ICMP packet is received, our hook is
called

▪ Check for magic tag in ICMP header

▪ Two distinct types of packets
▫ “Install” packets contain userland shellcode
▫ “Trigger” packets cause shellcode to execute

▪ May be sent independently
▫ Install payload, trigger it repeatedly at later date

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

50

Backdoor Strategy

▪ Problem: ICMP handler also runs in softirq context
▫ Want userland code execution

▪ Phase 1: transition to kernel-mode process context

▪ Phase 2: hijack userland control flow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

51

Backdoor Phase 1

▪ Check for magic tag and
packet type

▪ If “install” packet, copy
userland payload into
safe place (softirq stack)

Install userlandInstall userland
payloadpayload

Hook system call

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

52

Transition to Process Context

▪ If “trigger” packet, need
to transition to process
context

▪ Easiest way: hook
system call

Install userland
payload

Hook system callHook system call

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

53

System Call Hijacking

▪ How to find system call table at runtime?

▫ sidt instruction retrieves IDT address
▫ Find handler for INT 0x80 (syscall)
▫ Scan function for byte pattern calling into syscall

table

▪ Read-only syscall table
▫ More flipping write-protect bit in %cr0

▪ Store original syscall handler for later, write address of
hook into syscall table

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

54

Carry On...

▪ Want working ICMP stack

▪ Call original ICMP
handler

Install userland
payload

Hook system call

Continue executionContinue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

55

Backdoor Phase 2

▪ We've copied userland payload to kernel memory

▪ Some process comes along and calls our hooked
system call...

▪ Need to hijack process for userland code execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

56

Only Root, Please

▪ Only interested in root
processes

▪ How to verify?
▫ thread_info →
task_struct → cred

▫ Unstable, annoying...

Check root privilegesCheck root privileges

Inject userland
payload

Divert userland
execution

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

57

System Calls from Kernel Mode?

▪ System calls are extremely useful abstractions
▫ Friendly interface, kernel does most of the work

▪ Poll: is it possible to call system calls via INT 0x80
from kernel mode?
▫ Tally your votes...

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

58

System Calls from Kernel Mode!

▪ Most system calls will work when called from kernel

▪ Stack switch only occurs on inter-PL interrupts
▫ Based on CPL vs. DPL of GDT descriptor
▫ Happens on int and iret

▪ When called from kernel mode, just an ordinary intra-
PL interrupt

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

59

Exceptions (No Pun Intended)

▪ Doesn't work quite right with some system calls

▫ Some require pt_regs (per-thread register) structure
▫ Assumptions about state of stack at time of system

call

▪ fork, execve, iopl, vm86old, sigreturn, clone, vm86,
rt_sigreturn, sigaltstack, vfork

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

60

Checking for Root

▪ Easy: load %eax with 0x18 (getuid), INT 0x80

▪ Check %eax (return code) for 0

▪ If not zero, call original syscall handler for hooked
function

▪ If zero, unhook syscall and continue payload

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

61

Lethal Injection

▪ Kernel stack contains
pointer to saved
userland %esp

▪ Copy userland payload
from kernel memory to
userland stack

Check root privileges

Inject userlandInject userland
payloadpayload

Divert userland
execution

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

62

Let it Run...

▪ Userland stack is non-
executable (NX)

▪ Call mprotect syscall via
INT 0x80 to mark
userland stack
executable

Check root privileges

Inject userlandInject userland
payloadpayload

Divert userland
execution

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

63

It's a Diversion!

▪ Need to redirect
userland control flow

▪ Kernel stack contains
pointer to saved
userland %eip

▪ Give original saved %eip
to userland shellcode for
later

▪ Overwrite pointer with
address of payload on
userland stack

Check root privileges

Inject userland
payload

Divert userlandDivert userland
executionexecution

Continue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

64

Keep on Running

▪ Want hijacked process to
keep running

▪ Jump to original handler
for hijacked system call

Check root privileges

Inject userland
payload

Divert userland
execution

Continue executionContinue execution

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

65

Userland Payloads

▪ Use your imagination!
▫ Connect-back root shells work just fine

▪ Payloads are prefixed with stub that keeps hijacked
process running
▫ Fork new process
▫ Child runs shellcode
▫ Parent jumps to original saved %eip

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

66

ROSE Exploitation Demo

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

67

Future Work

No, this isn't a perfect exploit.

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

68

Hard-Coding

▪ Advantages over signatures / fingerprinting
▫ Reliability vs. portability

▪ On PAE kernel, ROP gadgets seem unavoidable
▫ Minimize number of ROP gadgets
▫ Minimize hard-coding of other data structures

▪ On non-PAE kernel, situation is better
▫ Can survive with one JMP ESP (if you know saved EIP

offset)
▫ Partial overwrites or spraying possible

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

69

Using the WP Bit

▪ Technically unsafe
▫ Scheduling on SMP systems

▪ Never seen it fail in practice

▪ Worth considering alternatives

▪ Leverage internal kernel functions (text_poke)?

▫ Possible to find at runtime?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

70

Future Work: Offense

▪ Remote fingerprinting of kernel
▫ Automatic generation of ROP gadgets

▪ Exploiting other packet families
▫ IrDA, Bluetooth, X.25?

▪ Finding that TCP/IP bug that breaks the Internet

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

71

Future Work: Defense

▪ Randomize kernel base at boot
▫ Prevents code reuse (e.g. ROP) remotely in absence

of remote kernel memory disclosure

▪ Fuzz and audit networking protocols more rigorously

▪ Inline functions that alter page permissions directly
(prevent easy ROP)

▪ Policies on preventing page permission modification
after initialization

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

72

Questions?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

73

Thanks To...

▪ Ralf Baechle

▪ Nelson Elhage

▪ Kees Cook

▪ twiz, sgrakkyu

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

74

E-mail: drosenberg@vsecurity.com
Twitter: @djrbliss

Company:
http://www.vsecurity.com

Personal:
http://www.vulnfactory.org

Contact

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

