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Who am I?

▪ Security consultant and vulnerability researcher at 
Virtual Security Research in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Focus on Linux kernel
▫ Research on kernel exploitation and mitigation
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Agenda

▪ Motivation

▪ Challenges of remote exploitation

▪ Prior work

▪ Case study: ROSE remote stack overflow
▫ Exploitation
▫ Backdoor

▪ Future work
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Why am I giving this talk?

Motivation
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Why Remote Kernel Exploits?

▪ Instant root
▫ No need to escalate privileges

▪ Remote userland exploitation is hard!
▫ Full ASLR + NX/DEP
▫ Sandboxing
▫ Reduced privileges
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Goals of This Talk

▪ Sorry, not actually an amateur radio talk

▪ Exploit development methodology

▪ Individual bugs vs. exploit techniques

▪ Discuss next steps for kernel hardening
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Wait, so you mean this is kind of hard?

Challenges of 
Remote Kernel 

Exploitation
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Warning: Fragile

▪ Consequence of failed remote userland exploit:
▫ Crash application/service, wait until restarted
▫ Crash child process, try again immediately

▪ Consequence of failed remote kernel exploit:
▫ Kernel panic, game over



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

9

Lack of Environment Control

▪ Typical local kernel exploit:
▫ Can trigger allocation of heap structures
▫ Can trigger calling of function pointers
▫ High amount of information leakage available to local 

users

▪ Remote kernel exploit:
▫ ?
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Escape From Interrupt Context

▪ Many remote kernel issues occur in interrupt context
▫ Asynchronous networking events

▪ End goal: userland code execution (remote shell)
▫ How do we get there?
▫ No process backing execution

▪ Need to transition
▫ Interrupt context to process context to userland
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Prior Work

What's been done before?
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A Few Statistics

▪ 18 known exploits for 16 vulnerabilities
▫ 19 authors
▫ 9 with full public source code
▫ 3 with partial or PoC source

▪ Wide range of platforms
▫ Solaris and OS X still need some remote love
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By Operating System

8

2

3
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Windows
Linux
*BSD
NetWare
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By Vulnerability Class

12

3

1

Stack Overflow
Heap Overflow
Array Indexing
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Highlights

▪ Barnaby Jack: Step into the Ring 0 (August 2005)
▫ First publication on remote kernel exploitation
▫ Transition to userland and kernel backdoor

▪ Sinan Eren: GREENAPPLE (May 2006)
▫ First remote kernel exploit in Immunity CANVAS
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Highlights (cont.)

▪ hdm, skape, Johnny Cache (November 2006)
▫ Broadcom, Dlink, and Netgear wifi drivers
▫ First remote kernel exploits in Metasploit

▪ Alfredo Ortega, Gerardo Richarte: OpenBSD IPv6 mbuf 
overflow (April 2007)
▫ First public remote kernel heap overflow
▫ Bypasses userland NX
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Highlights (cont.)

▪ Kostya Kortchinsky: MS08-001 (January 2008)
▫ Immunity CANVAS
▫ First publicized remote Windows kernel pool overflow

▪ sgrakkyu: sctp-houdini (April 2009)
▫ First remote Linux sl*b overflow
▫ Introduced vsyscall trick to transition from interrupt 

context to userland
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Observations

▪ Majority stack overflows, but none dealt with NX kernel 
stack
▫ Let's fix that

▪ No Linux interrupt context stack overflows
▫ sgrakkyu and twiz showed us how in Phrack 64, let's 

do it in real life

▪ Wireless drivers suck
▫ Six 802.11 remote kernel exploits
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Building the 
Exploit

Or: How I Learned to Stop Worrying and 
Love the Ham
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Target: 32-bit x86 PAE Kernel

▪ Kernel has NX support (CONFIG_DEBUG_RODATA)
▫ Only enforced on PAE (32-bit) or 64-bit kernels

▪ Can't execute first-stage shellcode on kernel stack

▪ Can't introduce code into userspace without proper 
page permissions

▪ No vsyscall trick for easy transitions
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Test Setup

▪ Attacker and victim VMs (Ubuntu 10.04)

▪ Debugging using KGDB over virtual serial port (host 
pipe)

▪ BPQ (AX.25 over Ethernet)

▪ Except for glue code, exploit written entirely in x86 
assembly
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Famous Last Words

Debian Security Advisory DSA-2240-1:

Dan Rosenburg reported two issues in 
the Linux implementation of the 
Amateur Radio X.25 PLP (Rose) 
protocol. A remote user can cause a 
denial of servicedenial of service by providing 
specially crafted facilities fields.
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Intro to ROSE

▪ Rarely used amateur radio protocol

▪ Provides network layer on top of AX.25's link layer

▪ Uses 10-digit addresses and AX.25 callsigns

▪ Static routing only
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CVE-2011-1493

▪ On initiating a ROSE connection, parties exchange 
facilities (supported features)

▪ FAC_NATIONAL_DIGIS allows host to provide list of 
digipeaters

▪ Parsing for this field reads length value from frame and 
copies digipeater addresses without bounds checking, 
causing a stack overflow
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Sad Code :-(
...

l = p[1];l = p[1];

...

else if (*p == FAC_NATIONAL_DIGIS) {

  fac_national_digis_received = 1;

  facilities->source_ndigis = 0;

  facilities->dest_ndigis   = 0;

  for (pt = p + 2, lg = 0 ; lg < llg < l ; pt += AX25_ADDR_LEN, lg += AX25_ADDR_LEN) {

    if (pt[6] & AX25_HBIT)

      memcpymemcpy(&facilities->dest_digis[facilities->dest_ndigis++], pt, AX25_ADDR_LEN);

    else

      memcpymemcpy(&facilities->source_digis[facilities->source_ndigis++], pt, AX25_ADDR_LEN);

  }

}

...
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Constraint #1

▪ The seventh byte of an AX.25 address is AND'd with 
AX25_HBIT (0x80) if it's a destination digipeater
▫ Otherwise, treated as a source digipeater

▪ Every seventh byte of our payload needs to be 
consistently greater or less than 0x80, or we'll copy 
into the wrong array

▪ Requires manual tweaking
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Plan of Attack

Get EIP

Unrestricted code
execution

Install kernel
backdoor

Restore and
recover
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Triggering the Bug

▪ Fairly trivial

▪ Modify ROSE facilities 
output functions to craft 
frame with overly large 
length field for 
FAC_NATIONAL_DIGIS, 
followed by lots of NOPs 
(0x90)

Get EIPGet EIP

Unrestricted code
execution

Install kernel
backdoor

Restore and
recover
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Evil ROSE Frame

ROSE
header

Facilities
Total

Length =
XX

0x00 FAC_NATIONAL FAC_NATIONAL_DIGIS
len =
0xff 0x9090...
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Got EIP

▪ Recompile ROSE module, 
reload, and use rose_call 
to initiate connection to 
target

▪ Overflowed softirq stack 
(interrupt handler)

Program received signal SIGSEGV, 
Segmentation fault.
[Switching to Thread 1456]
0x90909090 in ?? ()
(gdb) i r
eax            0x0 0
ecx            0xde3a5f3c -566599876
edx            0x296 662
ebx            0x90909090 -1869574000
esp            0xd11e199c 0xd11e199c
ebp            0x90909090 0x90909090
esi            0x90909090 -1869574000
edi            0x90909090 -1869574000
eip            0x90909090 0x90909090
eflags         0x10286 [ PF SF IF RF ]
cs             0x60 96
ss             0x68 104
ds             0x9090007b -1869610885
es             0x9090007b -1869610885
fs             0xffff 65535
gs             0xffff 65535
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How to Execute Code?

▪ Traditionally, return into 
shellcode on stack

▪ Problem 1: we don't 
know where we are
▫ Trampolines are easy

▪ Problem 2: softirq stack 
is non-executable

Get EIP

Unrestricted codeUnrestricted code
executionexecution

Install kernel
backdoor

Restore and
recover
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Review: ROP

▪ We control the return address and data at %esp

▪ Each return will direct execution to address at stack 
pointer and increment it

▪ Chain together function epilogues (“gadgets”) to 
perform arbitrary computation

▪ Relies on homogeneity of distribution (binary) kernels 
and lack of randomization
▫ Choose gadgets that are more likely to appear in 

constant locations across kernels



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

34

Making our Stack Executable

▪ Kernel has nice function 
to do this for us: 
▫ set_memory_x()

▪ Calling convention has 
arguments in registers

▪ ROP stub steps:
▫ Load (%esp & ~0xfff) 

into %eax
▫ Load 4 into %edx
▫ Call set_memory_x()
▫ Jump into stack

static unsigned long rop_stub[] = {
/*1*/   PUSH_ESP_POP_EAX,
/*4*/   0xffffffff,
        0xffffffff,
/*3*/   0xffffffff,

        ALIGN_EAX,
/*2*/   0xffffffff,
        0xffffffff,

/*1*/   RET,

/*4*/   POP_EDX,
        0x00000004,
/*3*/   0xffffffff,
        0xffffffff,
/*2*/   0xffffffff,
        0xffffffff,

/*1*/   RET,

/*4*/   SET_MEMORY_X,
        JMP_ESP,
};
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Overcoming Space Constraints

▪ We now have traditional 
shellcode executing on 
the softirq stack!

▪ Problem: length is 
limited to 0xff (255), 
minus what we've 
already used

▪ Not enough room for a 
useful payload

Get EIP

Unrestricted codeUnrestricted code
executionexecution

Install kernel
backdoor

Restore and
recover
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Needle in a Haystack

▪ Full ROSE frame is intact somewhere on the kernel 
heap

▪ Pointer to a memory region containing our socket data 
lives on the stack

▪ Walk up the stack, following kernel heap pointers

▪ Search general area for tag included in ROSE frame

▪ Mark it executable and jump to it
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What Now?

▪ We can execute 
arbitrary-length 
payloads now!

▪ Goal: install kernel 
backdoor in ICMP 
handler

Get EIP

Unrestricted code
execution

Install kernelInstall kernel
backdoorbackdoor

Restore and
recover
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Protocol Handlers

/* Array of network protocol structure */
const struct net_protocol __rcu 
*inet_protos[MAX_INET_PROTOS] __read_mostly;

/* Definition of network protocol structure */
struct net_protocol {
        int   (*handler)(struct sk_buff *skb);
        void (*err_handler)(struct sk_buff *skb, u32 info);
        ...
};

/* Standard well-defined IP protocols.  */
enum {
  IPPROTO_IP = 0,   /* Dummy protocol for TCP */
  IPPROTO_ICMP = 1, /* Internet Control Message Protocol */
  ...
};



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

39

Hooking ICMP

▪ Storage on softirq stack
▫ Already executable, safe, persistent

▪ Copy hook and address of original ICMP handler
▫ We'll need this later

▪ Handler is in read-only memory
▫ Flip write-protect bit in %cr0 register

▪ Write address of our hook into ICMP handler function 
pointer
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Hooked In

icmp_rcv:
   <icmp_rcv>: push ebp
   <icmp_rcv+1>: mov ebp,esp
   <icmp_rcv+3>: push edi
   <icmp_rcv+4>: push esi
   ...

hook:
   <hook>: push edi
   <hook+1>: push esi
   <hook+2>: push ebx
   <hook+3>: push eax
   ...

IPPROTO_IP

IPPROTO_ICMP

...

handler

err_handler

...

inet_protos:

net_protocol:
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Time to Rebuild...

▪ We've destroyed large 
portions of the softirq 
stack

▪ How can we keep the 
kernel running?

Get EIP

Unrestricted code
execution

Install kernel
backdoor

Restore andRestore and
recoverrecover
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Cleaning Up the Locks

▪ ROSE protocol is holding 
two spinlocks
▫ If we don't release 

these, the ROSE stack 
will deadlock soon

▪ Problem: ROSE is a 
module, we don't know 
where the locks live
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Needle in a Haystack, Again

▪ Global modules variable: linked list of loaded kernel 
modules

▪ A plan!
▫ Follow linked list until we find ROSE module
▫ Read module structure, find start of .data section
▫ Scan .data section for byte pattern of two 

consecutive spinlocks (distinctive signature)
▫ Release them
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Preemption Woes

▪ Preemption count must be consistent with what the 
kernel is expecting, or scheduler will...

     ...complain and fix it for you?!

    if (unlikely(prev_count != preempt_count())) {
          printk(KERN_ERR "huh, entered softirq %u %s %p"
                 "with preempt_count %08x,"
                 " exited with %08x?\n", vec_nr,
                 softirq_to_name[vec_nr], h->action,
                 prev_count, preempt_count());
          preempt_count() = prev_count;
   }

▪ Let's avoid that warning...
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Has Anybody Seen a Preemption 
Count?

▪ Preempt count lives at known location in thread_info 
struct, at base of kernel stack:

struct thread_info {
   struct task_struct *task; /* main task structure */
   struct exec_domain *exec_domain; /* execution domain */
   __u32 flags;        /* low level flags */
   __u32 status;       /* thread synchronous flags */
   __u32 cpu;          /* current CPU */
   int preempt_count;int preempt_count;  /* 0 => preemptable,
                         <0 => BUG */
   ...
};

▪ Decrement it and we're done
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Unwinding the Stack

▪ Stack is partially 
corrupted from overflow

▪ Need to restore it to 
recoverable state

▪ Walk up stack from 
current location until we 
match a signature of a 
known good state

▪ Adjust ESP to good state, 
and return

Overflow

Unwind to 
frame 

boundary
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Refresher: What Have We Achieved?

▪ Trigger the overflow, gain control of EIP

▪ Leverage ROP to mark softirq stack executable, jump 
into shellcode

▪ Search for intact ROSE frame on kernel heap, mark 
executable, jump into it

▪ Install kernel backdoor by hooking ICMP handler

▪ Do some necessary cleanup and unwind stack for safe 
return from softirq
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Kernel 
Backdoors for 
Fun and Profit

(Insert “backdoor” joke)
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What About That Backdoor Part?

▪ Whenever an ICMP packet is received, our hook is 
called

▪ Check for magic tag in ICMP header

▪ Two distinct types of packets
▫ “Install” packets contain userland shellcode
▫ “Trigger” packets cause shellcode to execute

▪ May be sent independently
▫ Install payload, trigger it repeatedly at later date
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Backdoor Strategy

▪ Problem: ICMP handler also runs in softirq context
▫ Want userland code execution

▪ Phase 1: transition to kernel-mode process context

▪ Phase 2: hijack userland control flow
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Backdoor Phase 1

▪ Check for magic tag and 
packet type

▪ If “install” packet, copy 
userland payload into 
safe place (softirq stack)

Install userlandInstall userland
payloadpayload

Hook system call

Continue execution
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Transition to Process Context

▪ If “trigger” packet, need 
to transition to process 
context

▪ Easiest way: hook 
system call

Install userland
payload

Hook system callHook system call

Continue execution
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System Call Hijacking

▪ How to find system call table at runtime?

▫ sidt instruction retrieves IDT address
▫ Find handler for INT 0x80 (syscall)
▫ Scan function for byte pattern calling into syscall 

table

▪ Read-only syscall table
▫ More flipping write-protect bit in %cr0

▪ Store original syscall handler for later, write address of 
hook into syscall table
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Carry On...

▪ Want working ICMP stack

▪ Call original ICMP 
handler

Install userland
payload

Hook system call

Continue executionContinue execution



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

55

Backdoor Phase 2

▪ We've copied userland payload to kernel memory

▪ Some process comes along and calls our hooked 
system call...

▪ Need to hijack process for userland code execution
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Only Root, Please

▪ Only interested in root 
processes

▪ How to verify?
▫ thread_info → 
task_struct → cred

▫ Unstable, annoying...

Check root privilegesCheck root privileges

Inject userland
payload

Divert userland
execution

Continue execution
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System Calls from Kernel Mode?

▪ System calls are extremely useful abstractions
▫ Friendly interface, kernel does most of the work

▪ Poll: is it possible to call system calls via INT 0x80 
from kernel mode?
▫ Tally your votes...
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System Calls from Kernel Mode!

▪ Most system calls will work when called from kernel

▪ Stack switch only occurs on inter-PL interrupts
▫ Based on CPL vs. DPL of GDT descriptor
▫ Happens on int and iret

▪ When called from kernel mode, just an ordinary intra-
PL interrupt
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Exceptions (No Pun Intended)

▪ Doesn't work quite right with some system calls

▫ Some require pt_regs (per-thread register) structure
▫ Assumptions about state of stack at time of system 

call

▪ fork, execve, iopl, vm86old, sigreturn, clone, vm86, 
rt_sigreturn, sigaltstack, vfork
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Checking for Root

▪ Easy: load %eax with 0x18 (getuid), INT 0x80

▪ Check %eax (return code) for 0

▪ If not zero, call original syscall handler for hooked 
function

▪ If zero, unhook syscall and continue payload
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Lethal Injection

▪ Kernel stack contains 
pointer to saved 
userland %esp

▪ Copy userland payload 
from kernel memory to 
userland stack

Check root privileges

Inject userlandInject userland
payloadpayload

Divert userland
execution

Continue execution
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Let it Run...

▪ Userland stack is non-
executable (NX)

▪ Call mprotect syscall via 
INT 0x80 to mark 
userland stack 
executable

Check root privileges

Inject userlandInject userland
payloadpayload

Divert userland
execution

Continue execution
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It's a Diversion!

▪ Need to redirect 
userland control flow

▪ Kernel stack contains 
pointer to saved 
userland %eip

▪ Give original saved %eip 
to userland shellcode for 
later

▪ Overwrite pointer with 
address of payload on 
userland stack

Check root privileges

Inject userland
payload

Divert userlandDivert userland
executionexecution

Continue execution
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Keep on Running

▪ Want hijacked process to 
keep running

▪ Jump to original handler 
for hijacked system call

Check root privileges

Inject userland
payload

Divert userland
execution

Continue executionContinue execution
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Userland Payloads

▪ Use your imagination!
▫ Connect-back root shells work just fine

▪ Payloads are prefixed with stub that keeps hijacked 
process running
▫ Fork new process
▫ Child runs shellcode
▫ Parent jumps to original saved %eip
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ROSE Exploitation Demo



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

67

Future Work

No, this isn't a perfect exploit.
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Hard-Coding

▪ Advantages over signatures / fingerprinting
▫ Reliability vs. portability

▪ On PAE kernel, ROP gadgets seem unavoidable
▫ Minimize number of ROP gadgets
▫ Minimize hard-coding of other data structures

▪ On non-PAE kernel, situation is better
▫ Can survive with one JMP ESP (if you know saved EIP 

offset)
▫ Partial overwrites or spraying possible
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Using the WP Bit

▪ Technically unsafe
▫ Scheduling on SMP systems

▪ Never seen it fail in practice

▪ Worth considering alternatives

▪ Leverage internal kernel functions (text_poke)?

▫ Possible to find at runtime?
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Future Work: Offense

▪ Remote fingerprinting of kernel
▫ Automatic generation of ROP gadgets

▪ Exploiting other packet families
▫ IrDA, Bluetooth, X.25?

▪ Finding that TCP/IP bug that breaks the Internet
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Future Work: Defense

▪ Randomize kernel base at boot
▫ Prevents code reuse (e.g. ROP) remotely in absence 

of remote kernel memory disclosure

▪ Fuzz and audit networking protocols more rigorously

▪ Inline functions that alter page permissions directly 
(prevent easy ROP)

▪ Policies on preventing page permission modification 
after initialization
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Questions?
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Thanks To...

▪ Ralf Baechle

▪ Nelson Elhage

▪ Kees Cook

▪ twiz, sgrakkyu
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E-mail: drosenberg@vsecurity.com
Twitter: @djrbliss

Company:
http://www.vsecurity.com

Personal:
http://www.vulnfactory.org

Contact
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