
Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

1

Dan Rosenberg

Android Modding for the
Security Practitioner

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

2

Who am I?

▪ Security consultant and vulnerability researcher at
Virtual Security Research in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Linux kernel exploitation
▫ Rooted a few Android phones

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

3

Goals of this Talk

▪ Clarify terminology

▪ Demystify Android rooting and modding techniques

▪ Draw some conclusions about security impact of
modding

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

4

Agenda

▪ The modding community

▪ Locked and unlocked bootloaders

▪ Flashing

▪ Case studies in rooting

▪ Post-root hacks

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

5

The Modding
Community

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

6

Why Do People Want to Mod?

▪ Expert usage
▫ Root-privileged applications for backup
▫ Tethering
▫ Overclocking/underclocking

▪ Customization
▫ Custom ROMs, themes
▫ Removal of bloatware

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

7

Why Do People Want to Mod?

▪ Upgradeability
▫ Cheap, subsidized phones -> phones become

obsolete rapidly -> carriers halt support
▫ Modding allows continued upgrades (security and

otherwise) in the event of missing carrier support

▪ Freedom
▫ Full control over your own hardware

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

8

The Modding Community

▪ Modding community is largely Android enthusiasts with
varying levels of technical background
▫ Result: mixed or confusing terminology, lack of

consistent definitions of terms

▪ Dozens of Android forums and publications
▫ Most popular: XDA Developers, RootzWiki,

AndroidForums

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

9

Why Don't (Some) Carriers Want You
Modding?

▪ Support costs (tech support, warranty claims for
bricked devices)

▪ Removal of sources of advertising revenue

▪ Free tethering conflicts with business model

▪ Ambiguous claims about “security”
▫ We'll take a look at this one

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

10

What Prevents People from Modding?

▪ Two primary prevention strategies:

▪ OS protections
▫ Prevent users from gaining root (administrative)

access on their devices

▪ Hardware/firmware protections
▫ Prevent users from flashing new firmware images

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

11

Locked and Unlocked Bootloaders

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

12

What is a “Locked” Bootloader

▪ Term has come to encompass a variety of restrictions
preventing customization

▪ My definition: “A bootloader that performs
cryptographic signature verification to prevent booting
custom, non-signed code”

▪ Implementation will vary based on vendor

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

13

The State of Unlocked Bootloaders

▪ Wide variety of tablet OEMs (Toshiba, ASUS, Lenovo,
Sony)

▪ Four biggest phone OEMs: Samsung, Motorola, HTC, LG

▪ Varied degrees of bootloader locking
▫ Samsung ships mostly unlockable
▫ HTC supports official unlocking (voids warranty)
▫ LG ships unlocked, but no default flashing support
▫ Motorola tends to be locked tight, no custom ROMs

and no downgrading

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

14

How Do Locked Bootloaders Work?

▪ Varies by hardware implementation

▪ Basic idea:
▫ On-chip crytographic verification of early stage

bootloader
▫ Bootloader verifies signature of subsequent stage

before loading (kernel, Android recovery, etc.)

▪ If signature check fails, drops into a failsafe mode for
recovery

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

15

Android Partition Layout

▪ Actual partitions will vary by manufacturer and chipset

▪ Relevant to Android operating system:
▫ system: binary applications, system configuration,

services
▫ userdata: user-installed apps, contacts, data
▫ boot: kernel, filesystem root
▫ recovery: Android recovery system
▫ cache: various frequently accessed system data
▫misc: odds and ends

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

16

Case Study: Motorola/OMAP

▪ SHA1 hash of root public key stored in eFUSE

▪ Boot ROM verifies hash of key stored in mbmloader
and signature on mbmloader

▪ mbmloader verifies signature on mbm (“Motorola
Bootloader Mode?”)

▪ mbm verifies signature on lbl (“Linux Boot Loader”)

▪ lbl verifies signature on normal kernel or recovery

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

17

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

18

Case Study: HTC/Qualcomm

▪ Primary processor (baseband) executes Primary Boot
Loader (PBL) from ROM

▪ If FORCE_TRUSTED_BOOT Qfuse blown, verify signature
of Secondary Boot Loader (SBL)
▫ Public key stored via Qfuse

▪ SBL verifies signature on REX/AMSS (baseband) and
HBOOT (app processor bootloader), starts app
processor running HBOOT

▪ HBOOT verifies signature on kernel/recovery, boots
into operating system

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

19

HTC S-ON/S-OFF

▪ On some HTC devices, NAND lock prevents writing to
system, kernel, and recovery partitions (“S-ON”)

▪ Flag in radio NVRAM (“@secuflag”) is checked by
HBOOT, which enforces NAND lock

▪ Unsetting @secuflag or providing HBOOT that does not
enforce is required to flash custom ROMs (“S-OFF”)

▪ Created distinction between temporary root (“temp
root”) and permanent root (“perm root”, “perma-root”)
▫ You'll hear these terms misused outside of HTC,

where they are meaningless

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

20

HTC Bootloader Unlocking

▪ Submit device-specific token to HTC
▫ Voids warranty

▪ Download and flash signed binary blob

▪ HBOOT verifies blob and sets flag
▫ Disables signature checking on kernel, recovery, and

system

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

21

Fastboot Bootloader Unlocking

▪ If device is unlockable, just say the magic words:
▫ “fastboot oem unlock”
▫ We'll talk about fastboot in a bit

▪ Disables signature checks on all partitions

▪ Wipes userdata partition
▫ Important for data protection
▫ Otherwise, could flash compromised

kernel/system/recovery and steal user data

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

22

Flashing

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

23

More Fragmentation

▪ Many proprietary and open flashing protocols

▪ Vary by both handset manufacturer and chipset

▪ Terms are used interchangeably by Android modding
community, leading to confusion

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

24

Fastboot

▪ Standardized Android protocol for flashing over USB
▫ “Client” is fastboot utility from AOSP
▫ “Server” is proprietary OEM-specific implementation

in second-stage bootloader

▪ Flashes full disk images to specific partitions
▫ Any signature checking happens at boot, not at

flashing

▪ Many phones disable for security reasons

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

25

Update.zip

▪ Officially supported Android update mechanism

▪ Implemented in Android recovery

▪ Copy zip file to SD card or internal storage
▫ Full binaries, or binary diff

▪ Validates RSA signature against manufacturer keys

▪ Bugs in the past
▫ Original Droid root

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

26

APX Mode / nvflash

▪ Tegra devices only

▪ Implemented in boot ROM

▪ All communication is AES-128-CBC encrypted
▫ Uses Secure Boot Key (SBK)
▫ Implemented in hardware as blown fuses
▫ Some SBKs are public or based on device ID
▫ Others are OEM secrets

▪ Upload “miniloader”, a minimal bootloader, that
handles actual flashing

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

27

SBF

▪ Motorola proprietary format

▪ Similar to nvflash, but implemented in secondary
bootloader (“mbm”) instead of in boot ROM

▪ Client uses RSD Lite (“Remote Software Download”)

▪ Upload minimal bootloader to handle actual flashing
▫ Miniloader is signature-checked

▪ Since Droid 3, replaced by Fastboot

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

28

Misc. Custom Tools/Protocols

▪ KDZ
▫ LG download mode

▪ Odin
▫ Samsung download mode

▪ PDL
▫ Pantech download mode

▪ RUU (ROM Upgrade Utility)
▫ HTC utility, just a Fastboot wrapper

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

29

Flashing and Data Protection

▪ Userdata partition contains everything valuable
▫ Contacts, mail, SMS, apps, app data

▪ All flashing protocols reachable prior to booting OS
▫ Device passcode won't save you

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

30

Flashing and Data Protection

▪ Without disk encryption, all data is recoverable if:
▫ SBK of a Tegra device is leaked or predictable

● Use nvflash to read userdata

▫ Bootloader is kept unlocked
● Flash compromised recovery/kernel/system, boot,

read from userdata block device

▪ With disk encryption, bootloader status has no effect
on data protection
▫ ...if you actually require a strong password

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

31

Rooting

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

32

Why Root?

▪ Need root access to operating system to perform
administrative tasks

▪ It's possible to have a device that:
▫ Has unlocked bootloader (can boot unsigned code)
▫ Does not allow flashing unsigned code

▪ In these cases, custom ROMs are only possible after
gaining root and writing to block devices directly

▪ On devices with locked bootloaders, need root to
customize anything

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

33

Background: Android Debugging Bridge (ADB)

▪ Connect over Wifi or USB
▫ Enabled in device settings (“USB Debugging Mode”)

▪ Allows installing applications

▪ ADB shell has uid/gid “shell”, and lots of groups:
 /* add extra groups:
 ** AID_ADB to access the USB driver
 ** AID_LOG to read system logs (adb logcat)
 ** AID_INPUT to diagnose input issues (getevent)
 ** AID_INET to diagnose network issues (netcfg, ping)
 ** AID_GRAPHICS to access the frame buffer
 ** AID_NET_BT and AID_NET_BT_ADMIN to diagnose bluetooth (hcidump)
 ** AID_SDCARD_RW to allow writing to the SD card
 ** AID_MOUNT to allow unmounting the SD card before rebooting
 */

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

34

Background: Android Properties

▪ Android uses “property” system for system settings

▪ Applications can set arbitrary properties, except
reserved property namespaces

▪ “ro” (read-only) properties can only be set once, never
changed

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

35

ADB + Properties = ?

▪ Certain properties have special meaning to ADB

▪ If “ro.secure” is 0, ADB shell runs as root

▪ Lesser known: if “ro.kernel.qemu” is 1, ADB shell runs
as root:

 /* run adbd in secure mode if ro.secure is set and
 ** we are not in the emulator
 */

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

36

Case Study: Motofail

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

37

The Goal

▪ The Android init process parses /data/local.prop for
property settings at boot

▪ If we can modify this file to set any of those “special”
properties, we win, because ADB shell will run as root

▪ Fortunately, there are lots of file permission bugs :-)

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

38

Motofail: The Bugs

▪ Motorola init.rc script (run as root) had multiple bugs:

 mkdir /data/dontpanic
 chown root log /data/dontpanic
 chmod 0770 /data/dontpanic
 # create logger folder
 mkdir /data/logger 0770 radio log
 chown radio log /data/logger
 chmod 0770 /data/logger
 # workaround: in solana somebody deletes the logfile.
 # we have to back it up.
 copy /data/dontpanic/apanic_console /data/logger/last_apanic_console

▪ ADB shell has group “log”

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

39

Exploit Flow

▪ Put a file containing the string “ro.kernel.qemu=1”
at /data/dontpanic/apanic_console

▪ Place a symlink pointing to /data/local.prop at
/data/logger/last_apanic_console

▪ On reboot, init will copy our file on top of
local.prop, and ADB will run as root!

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

40

Motofail: The Emulator

▪ Adversarial relationship between rooters and OEMs
▫ Goal is to keep bugs unpatched as long as possible

▪ To prevent patching, Motofail was heavily obfuscated
▫ Exploit ran inside custom emulator
▫ Dirty tricks to prevent dynamic analysis
▫ Dummy code generation for false trails
▫ Included full list of filesystem contents in binary

▪ Motorola fixed it quickly anyway :-(
▫ Please email me if you were the one who had to

reverse engineer this

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

41

Lessons from Motofail

▪ File permission bugs are a serious problem on Android

▪ Exploit is not possible without group “log”
▫ This group is granted to applications that request
android.permission.READ_LOGS

▫ This permission substantially increases the attack
surface exposed to malicious applications

▪ Disable USB Debugging mode when not in use
▫ Cripples data protection if lost device is rootable

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

42

Case Study: Sony
Tablet S

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

43

Sony Tablet S: The Bug

▪ Again, started with the obvious: /log directory is
writable by group log

▪ Directory contains root-owned log files that represent
on-disk copies of the Android debugging logs (logcat)

▪ Log backups are created with predictable filenames

▪ Observed that replacing log backup with a symlink and
triggering a log dump by writing to logcat will:
▫ Create a new file anywhere with the log contents
▫ Append log contents to any existing file

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

44

Plan of Attack

▪ Ultimate goal: get the string “ro.kernel.qemu=1”
into /data/local.prop

▪ On any other device, this would be easy:
▫ We can partially control the log file contents by

writing to logcat
▫ If local.prop doesn't exist, vuln will create it

▫ If local.prop does exist, vuln will append to it

▪ But...

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

45

OEM Customization

▪ On this particular device, /data/local.prop is a
symbolic link to /configs/local.prop, which is a
read-only filesystem (can't append)

▪ Need to find a way to remove existing symlink in order
to create new local.prop file

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

46

How to Remove Arbitrary Files

▪ Noticed odd behavior in Android Package Manager
(pm)

▪ pm distinguishes between “system” and “user-
installed” packages

▫ System apps are OEM-installed in /system/app

▪ Every app has a data directory in /data/data/[app]/

▫ Includes lib/ directory for native libraries

▫ System apps are expected to have empty “lib” dirs

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

47

How to Remove Arbitrary Files, cont.

▪ If a system app's lib directory is not empty on boot, the
Package Manager will empty it

▪ What happens if we replace a system app's lib
directory with a symbolic link to a directory we want
empty?

▪ pm will follow symlinks and non-recursively empty this
directory!

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

48

How to Execute Code as a System App

▪ “run-as” program allows ADB shell to assume
privileges of any application marked as “debuggable”

▪ Parses /data/system/packages.list file to determine
status and uid of packages

▪ Normally, no system apps are marked debuggable

▪ But, we can append data to arbitrary files!

▫ Modify /data/system/packages.list to make a
system app debuggable

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

49

Putting it All Together
▪ Trigger log vulnerability to append fake package

information to /data/system/packages.list

▪ Use “run-as” to assume privileges of system app

▪ Replace system app's lib directory with symlink to
/data

▪ Reboot, /data/local.prop will be removed

▪ Use log vulnerability again to create new local.prop

▪ Reboot and run ADB as root

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

50

Lessons from Sony Root

▪ Root vulnerability ?= security vulnerability
▫ This cannot be exploited by malicious applications

▪ “Benign” roots are often patched faster than real
security bugs
▫ Hmm...

▪ Multiple bugs may be chained together to achieve goal

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

51

Post-Root Modding

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

52

Custom Recovery Partitions

▪ Replaces stock Android recovery system
▫ Allows easily and safely flashing custom partitions

▪ Most popular: ClockworkMod
Recovery (CWM)

▪ If bootloader is locked, can't
flash custom recovery
▫ Instead, can hijack original

recovery executable
(“bootstrap recovery”)

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

53

2nd Init, 2nd System, and kexec

▪ Unable to flash custom kernels on locked bootloaders

▪ 2nd Init: use ptrace() to hijack init process early and run
custom init scripts
▫ Allows customization of early boot process

▪ 2nd System: mount a custom system partition on top of
original, preserving the original while allowing OS
mods

▪ kexec: use the kexec() system call to boot into a new
kernel without flashing to disk

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

54

How is Root Access Provisioned?

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

55

Su and Superuser

▪ No passwords to type in

▪ “su” is setuid root native binary

▪ “Superuser” is Android APK (application)

▪ Applications execute su to gain root privileges

▪ su communicates with Superuser over Unix socket to
check database of permitted apps/uids
▫ Permit, deny, or prompt based on response

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

56

How Su Increases Attack Surface

▪ By default, no setuid binaries accessible by apps

▪ Just the presence of setuid binaries can enable
exploitation of privilege escalation vulnerabilities

▪ CVE-2010-3847, CVE-2010-3856
▫ Tavis Ormandy's glibc vulns, require setuid to exploit

▪ CVE-2012-0056
▫ “Mempodroid” exploit, requires setuid app

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

57

Evaluating su

▪ User “shell” and “root” automatically permitted:

 if (su_from.uid == AID_ROOT || su_from.uid == AID_SHELL)

 allow(shell, orig_umask);

▪ Looks ok now, but sketchy code in the past:

@@ -318,7 +318,8 @@ int main(int argc, char *argv[])

 }

 } else if (!strcmp(argv[i], "-s") || !strcmp(argv[i], "--shell")) {

 if (++i < argc) {

- strcpy(shell, argv[i]);

+ strncpy(shell, argv[i], sizeof(shell));

+ shell[sizeof(shell) - 1] = 0;

 } else {

 usage();

 }

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

58

Pros and Cons of Su/Superuser

▪ If USB debugging enabled, no root exploit needed to
obtain all data
▫ Grants root access to “shell” without prompt

▪ Enables self-administration
▫ Can patch your own services
▫ Can detect malicious activity more easily

▪ Introduces additional attack surface via potential
vulnerabilities and presence of accessible setuid apps

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

59

Final Words

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

60

Final Words

▪ Impossible to evaluate “Android” security, especially
data protection, without considering chipset and
handset hardware

▪ Use disk encryption if it's available!

▪ Disable USB debugging access when not in use

▪ Rooting/modding is a double-edged sword
▫ Allows manual patching of vulns, but may introduce

additional vulns or exposures

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

61

Thanks To...

▪ [mbm]
▪ kmdm
▪ IEF
▪ Matt Mastracci
▪ Joshua Wise
▪ ShabbyPenguin
▪ k0nane
▪ jcase
▪ PlayfulGod

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

62

References

▪ http://tjworld.net/wiki/Android/HTC/Vision/BootProcess

▪ http://wiki.opticaldelusion.org/wiki/Motoactv

▪ http://www.droid-developers.org/wiki

http://tjworld.net/wiki/Android/HTC/Vision/BootProcess
http://wiki.opticaldelusion.org/wiki/Motoactv
http://www.droid-developers.org/wiki

Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

63

Questions?

E-mail: drosenberg@vsecurity.com

Twitter: @djrbliss

Company:

http://www.vsecurity.com

Personal:

http://www.vulnfactory.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

