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Who am I?

▪ Security consultant and vulnerability researcher at 
Virtual Security Research in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Linux kernel exploitation
▫ Rooted a few Android phones
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Goals of this Talk

▪ Clarify terminology

▪ Demystify Android rooting and modding techniques

▪ Draw some conclusions about security impact of 
modding
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Agenda

▪ The modding community

▪ Locked and unlocked bootloaders

▪ Flashing

▪ Case studies in rooting

▪ Post-root hacks
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The Modding 
Community
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Why Do People Want to Mod?

▪ Expert usage
▫ Root-privileged applications for backup
▫ Tethering
▫ Overclocking/underclocking

▪ Customization
▫ Custom ROMs, themes
▫ Removal of bloatware
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Why Do People Want to Mod?

▪ Upgradeability
▫ Cheap, subsidized phones -> phones become 

obsolete rapidly -> carriers halt support
▫ Modding allows continued upgrades (security and 

otherwise) in the event of missing carrier support

▪ Freedom
▫ Full control over your own hardware
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The Modding Community

▪ Modding community is largely Android enthusiasts with 
varying levels of technical background
▫ Result: mixed or confusing terminology, lack of 

consistent definitions of terms

▪ Dozens of Android forums and publications
▫ Most popular: XDA Developers, RootzWiki, 

AndroidForums
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Why Don't (Some) Carriers Want You 
Modding?

▪ Support costs (tech support, warranty claims for 
bricked devices)

▪ Removal of sources of advertising revenue

▪ Free tethering conflicts with business model

▪ Ambiguous claims about “security”
▫ We'll take a look at this one
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What Prevents People from Modding?

▪ Two primary prevention strategies:

▪ OS protections
▫ Prevent users from gaining root (administrative) 

access on their devices

▪ Hardware/firmware protections
▫ Prevent users from flashing new firmware images
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Locked and Unlocked Bootloaders
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What is a “Locked” Bootloader

▪ Term has come to encompass a variety of restrictions 
preventing customization

▪ My definition: “A bootloader that performs 
cryptographic signature verification to prevent booting 
custom, non-signed code”

▪ Implementation will vary based on vendor
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The State of Unlocked Bootloaders

▪ Wide variety of tablet OEMs (Toshiba, ASUS, Lenovo, 
Sony)

▪ Four biggest phone OEMs: Samsung, Motorola, HTC, LG

▪ Varied degrees of bootloader locking
▫ Samsung ships mostly unlockable
▫ HTC supports official unlocking (voids warranty)
▫ LG ships unlocked, but no default flashing support
▫ Motorola tends to be locked tight, no custom ROMs 

and no downgrading
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How Do Locked Bootloaders Work?

▪ Varies by hardware implementation

▪ Basic idea:
▫ On-chip crytographic verification of early stage 

bootloader
▫ Bootloader verifies signature of subsequent stage 

before loading (kernel, Android recovery, etc.)

▪ If signature check fails, drops into a failsafe mode for 
recovery
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Android Partition Layout

▪ Actual partitions will vary by manufacturer and chipset

▪ Relevant to Android operating system:
▫ system: binary applications, system configuration, 

services
▫ userdata: user-installed apps, contacts, data
▫ boot: kernel, filesystem root
▫ recovery: Android recovery system
▫ cache: various frequently accessed system data
▫misc: odds and ends
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Case Study: Motorola/OMAP

▪ SHA1 hash of root public key stored in eFUSE

▪ Boot ROM verifies hash of key stored in mbmloader 
and signature on mbmloader

▪ mbmloader verifies signature on mbm (“Motorola 
Bootloader Mode?”)

▪ mbm verifies signature on lbl (“Linux Boot Loader”)

▪ lbl verifies signature on normal kernel or recovery
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Case Study: HTC/Qualcomm

▪ Primary processor (baseband) executes Primary Boot 
Loader (PBL) from ROM

▪ If FORCE_TRUSTED_BOOT Qfuse blown, verify signature 
of Secondary Boot Loader (SBL)
▫ Public key stored via Qfuse

▪ SBL verifies signature on REX/AMSS (baseband) and 
HBOOT (app processor bootloader), starts app 
processor running HBOOT

▪ HBOOT verifies signature on kernel/recovery, boots 
into operating system
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HTC S-ON/S-OFF

▪ On some HTC devices, NAND lock prevents writing to 
system, kernel, and recovery partitions (“S-ON”)

▪ Flag in radio NVRAM (“@secuflag”) is checked by 
HBOOT, which enforces NAND lock

▪ Unsetting @secuflag or providing HBOOT that does not 
enforce is required to flash custom ROMs (“S-OFF”) 

▪ Created distinction between temporary root (“temp 
root”) and permanent root (“perm root”, “perma-root”)
▫ You'll hear these terms misused outside of HTC, 

where they are meaningless



Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

20

HTC Bootloader Unlocking

▪ Submit device-specific token to HTC
▫ Voids warranty

▪ Download and flash signed binary blob

▪ HBOOT verifies blob and sets flag
▫ Disables signature checking on kernel, recovery, and 

system
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Fastboot Bootloader Unlocking

▪ If device is unlockable, just say the magic words:
▫ “fastboot oem unlock”
▫ We'll talk about fastboot in a bit

▪ Disables signature checks on all partitions

▪ Wipes userdata partition
▫ Important for data protection
▫ Otherwise, could flash compromised 

kernel/system/recovery and steal user data
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Flashing
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More Fragmentation

▪ Many proprietary and open flashing protocols

▪ Vary by both handset manufacturer and chipset

▪ Terms are used interchangeably by Android modding 
community, leading to confusion
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Fastboot

▪ Standardized Android protocol for flashing over USB
▫ “Client” is fastboot utility from AOSP
▫ “Server” is proprietary OEM-specific implementation 

in second-stage bootloader

▪ Flashes full disk images to specific partitions
▫ Any signature checking happens at boot, not at 

flashing

▪ Many phones disable for security reasons
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Update.zip

▪ Officially supported Android update mechanism

▪ Implemented in Android recovery

▪ Copy zip file to SD card or internal storage
▫ Full binaries, or binary diff

▪ Validates RSA signature against manufacturer keys

▪ Bugs in the past
▫ Original Droid root
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APX Mode / nvflash

▪ Tegra devices only

▪ Implemented in boot ROM

▪ All communication is AES-128-CBC encrypted
▫ Uses Secure Boot Key (SBK)
▫ Implemented in hardware as blown fuses
▫ Some SBKs are public or based on device ID
▫ Others are OEM secrets

▪ Upload “miniloader”, a minimal bootloader, that 
handles actual flashing
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SBF

▪ Motorola proprietary format

▪ Similar to nvflash, but implemented in secondary 
bootloader (“mbm”) instead of in boot ROM

▪ Client uses RSD Lite (“Remote Software Download”)

▪ Upload minimal bootloader to handle actual flashing
▫ Miniloader is signature-checked

▪ Since Droid 3, replaced by Fastboot
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Misc. Custom Tools/Protocols

▪ KDZ
▫ LG download mode

▪ Odin
▫ Samsung download mode

▪ PDL
▫ Pantech download mode

▪ RUU (ROM Upgrade Utility)
▫ HTC utility, just a Fastboot wrapper
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Flashing and Data Protection

▪ Userdata partition contains everything valuable
▫ Contacts, mail, SMS, apps, app data

▪ All flashing protocols reachable prior to booting OS
▫ Device passcode won't save you
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Flashing and Data Protection

▪ Without disk encryption, all data is recoverable if:
▫ SBK of a Tegra device is leaked or predictable

● Use nvflash to read userdata

▫ Bootloader is kept unlocked
● Flash compromised recovery/kernel/system, boot, 

read from userdata block device

▪ With disk encryption, bootloader status has no effect 
on data protection
▫ ...if you actually require a strong password
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Rooting



Copyright © 2012 Virtual Security Research, LLC.
All Rights Reserved.

32

Why Root?

▪ Need root access to operating system to perform 
administrative tasks

▪ It's possible to have a device that:
▫ Has unlocked bootloader (can boot unsigned code)
▫ Does not allow flashing unsigned code

▪ In these cases, custom ROMs are only possible after 
gaining root and writing to block devices directly

▪ On devices with locked bootloaders, need root to 
customize anything
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Background: Android Debugging Bridge (ADB)

▪ Connect over Wifi or USB
▫ Enabled in device settings (“USB Debugging Mode”)

▪ Allows installing applications

▪ ADB shell has uid/gid “shell”, and lots of groups:
        /* add extra groups:
        ** AID_ADB to access the USB driver
        ** AID_LOG to read system logs (adb logcat)
        ** AID_INPUT to diagnose input issues (getevent)
        ** AID_INET to diagnose network issues (netcfg, ping)
        ** AID_GRAPHICS to access the frame buffer
        ** AID_NET_BT and AID_NET_BT_ADMIN to diagnose bluetooth (hcidump)
        ** AID_SDCARD_RW to allow writing to the SD card
        ** AID_MOUNT to allow unmounting the SD card before rebooting
        */
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Background: Android Properties

▪ Android uses “property” system for system settings

▪ Applications can set arbitrary properties, except 
reserved property namespaces

▪ “ro” (read-only) properties can only be set once, never 
changed
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ADB + Properties = ?

▪ Certain properties have special meaning to ADB

▪ If “ro.secure” is 0, ADB shell runs as root

▪ Lesser known: if “ro.kernel.qemu” is 1, ADB shell runs 
as root:

   
   /* run adbd in secure mode if ro.secure is set and
    ** we are not in the emulator
    */
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Case Study: Motofail
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The Goal

▪ The Android init process parses /data/local.prop for 
property settings at boot

▪ If we can modify this file to set any of those “special” 
properties, we win, because ADB shell will run as root

▪ Fortunately, there are lots of file permission bugs :-)
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Motofail: The Bugs

▪ Motorola init.rc script (run as root) had multiple bugs:

  
  mkdir /data/dontpanic
  chown root log /data/dontpanic
  chmod 0770 /data/dontpanic
  # create logger folder
  mkdir /data/logger 0770 radio log
  chown radio log /data/logger
  chmod 0770 /data/logger
  # workaround: in solana somebody deletes the logfile.
  # we have to back it up.
  copy /data/dontpanic/apanic_console /data/logger/last_apanic_console

▪ ADB shell has group “log”
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Exploit Flow

▪ Put a file containing the string “ro.kernel.qemu=1” 
at /data/dontpanic/apanic_console

▪ Place a symlink pointing to /data/local.prop at 
/data/logger/last_apanic_console

▪ On reboot, init will copy our file on top of 
local.prop, and ADB will run as root!
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Motofail: The Emulator

▪ Adversarial relationship between rooters and OEMs
▫ Goal is to keep bugs unpatched as long as possible

▪ To prevent patching, Motofail was heavily obfuscated
▫ Exploit ran inside custom emulator
▫ Dirty tricks to prevent dynamic analysis
▫ Dummy code generation for false trails
▫ Included full list of filesystem contents in binary

▪ Motorola fixed it quickly anyway :-(
▫ Please email me if you were the one who had to 

reverse engineer this
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Lessons from Motofail

▪ File permission bugs are a serious problem on Android

▪ Exploit is not possible without group “log”
▫ This group is granted to applications that request 
android.permission.READ_LOGS

▫ This permission substantially increases the attack 
surface exposed to malicious applications

▪ Disable USB Debugging mode when not in use
▫ Cripples data protection if lost device is rootable
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Case Study: Sony 
Tablet S
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Sony Tablet S: The Bug

▪ Again, started with the obvious: /log directory is 
writable by group log

▪ Directory contains root-owned log files that represent 
on-disk copies of the Android debugging logs (logcat)

▪ Log backups are created with predictable filenames

▪ Observed that replacing log backup with a symlink and 
triggering a log dump by writing to logcat will:
▫ Create a new file anywhere with the log contents
▫ Append log contents to any existing file
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Plan of Attack

▪ Ultimate goal: get the string “ro.kernel.qemu=1” 
into /data/local.prop

▪ On any other device, this would be easy:
▫ We can partially control the log file contents by 

writing to logcat
▫ If local.prop doesn't exist, vuln will create it

▫ If local.prop does exist, vuln will append to it

▪ But...
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OEM Customization

▪ On this particular device, /data/local.prop is a 
symbolic link to /configs/local.prop, which is a 
read-only filesystem (can't append)

▪ Need to find a way to remove existing symlink in order 
to create new local.prop file
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How to Remove Arbitrary Files

▪ Noticed odd behavior in Android Package Manager 
(pm)

▪ pm distinguishes between “system” and “user-
installed” packages

▫ System apps are OEM-installed in /system/app

▪ Every app has a data directory in /data/data/[app]/

▫ Includes lib/ directory for native libraries

▫ System apps are expected to have empty “lib” dirs 
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How to Remove Arbitrary Files, cont.

▪ If a system app's lib directory is not empty on boot, the 
Package Manager will empty it

▪ What happens if we replace a system app's lib 
directory with a symbolic link to a directory we want 
empty?

▪ pm will follow symlinks and non-recursively empty this 
directory!
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How to Execute Code as a System App

▪ “run-as” program allows ADB shell to assume 
privileges of any application marked as “debuggable”

▪ Parses /data/system/packages.list file to determine 
status and uid of packages

▪ Normally, no system apps are marked debuggable

▪ But, we can append data to arbitrary files!

▫ Modify /data/system/packages.list to make a 
system app debuggable
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Putting it All Together
▪ Trigger log vulnerability to append fake package 

information to /data/system/packages.list

▪ Use “run-as” to assume privileges of system app

▪ Replace system app's lib directory with symlink to 
/data

▪ Reboot, /data/local.prop will be removed

▪ Use log vulnerability again to create new local.prop

▪ Reboot and run ADB as root
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Lessons from Sony Root

▪ Root vulnerability ?= security vulnerability
▫ This cannot be exploited by malicious applications

▪ “Benign” roots are often patched faster than real 
security bugs
▫ Hmm...

▪ Multiple bugs may be chained together to achieve goal
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Post-Root Modding
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Custom Recovery Partitions

▪ Replaces stock Android recovery system
▫ Allows easily and safely flashing custom partitions

▪ Most popular: ClockworkMod 
Recovery (CWM)

▪ If bootloader is locked, can't
flash custom recovery
▫ Instead, can hijack original

recovery executable
(“bootstrap recovery”)
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2nd Init, 2nd System, and kexec

▪ Unable to flash custom kernels on locked bootloaders

▪ 2nd Init: use ptrace() to hijack init process early and run 
custom init scripts
▫ Allows customization of early boot process

▪ 2nd System: mount a custom system partition on top of 
original, preserving the original while allowing OS 
mods

▪ kexec: use the kexec() system call to boot into a new 
kernel without flashing to disk
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How is Root Access Provisioned?
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Su and Superuser

▪ No passwords to type in

▪ “su” is setuid root native binary

▪ “Superuser” is Android APK (application)

▪ Applications execute su to gain root privileges

▪ su communicates with Superuser over Unix socket to 
check database of permitted apps/uids
▫ Permit, deny, or prompt based on response
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How Su Increases Attack Surface

▪ By default, no setuid binaries accessible by apps

▪ Just the presence of setuid binaries can enable 
exploitation of privilege escalation vulnerabilities

▪ CVE-2010-3847, CVE-2010-3856
▫ Tavis Ormandy's glibc vulns, require setuid to exploit

▪ CVE-2012-0056
▫ “Mempodroid” exploit, requires setuid app
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Evaluating su

▪ User “shell” and “root” automatically permitted:

    
    if (su_from.uid == AID_ROOT || su_from.uid == AID_SHELL)

        allow(shell, orig_umask);

▪ Looks ok now, but sketchy code in the past:

@@ -318,7 +318,8 @@ int main(int argc, char *argv[])

             }

         } else if (!strcmp(argv[i], "-s") || !strcmp(argv[i], "--shell")) {

             if (++i < argc) {

-                strcpy(shell, argv[i]);

+                strncpy(shell, argv[i], sizeof(shell));

+                shell[sizeof(shell) - 1] = 0;

             } else {

                 usage();

             }
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Pros and Cons of Su/Superuser

▪ If USB debugging enabled, no root exploit needed to 
obtain all data
▫ Grants root access to “shell” without prompt

▪ Enables self-administration
▫ Can patch your own services
▫ Can detect malicious activity more easily

▪ Introduces additional attack surface via potential 
vulnerabilities and presence of accessible setuid apps
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Final Words
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Final Words

▪ Impossible to evaluate “Android” security, especially 
data protection, without considering chipset and 
handset hardware

▪ Use disk encryption if it's available!

▪ Disable USB debugging access when not in use

▪ Rooting/modding is a double-edged sword
▫ Allows manual patching of vulns, but may introduce 

additional vulns or exposures
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Questions?

E-mail: drosenberg@vsecurity.com

Twitter: @djrbliss

Company:

http://www.vsecurity.com

Personal:

http://www.vulnfactory.org
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